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A method of asymptotic expansion is proposed for wave processes which are close 

to stationary periodic waves of arbitrary form. It is shown that equations of the 
first approximation can be written in the form of Lagrange equations of the sec- 

ond kind for averaged Lagrange and Rayleigh functions. 
At the present time most analytical results in the theory of nonlinear wave 

processes are obtained with the aid of approximate methods based on the small- 
ness of one or another parameter in the initial equations or in the boundary (ini- 

tial) conditions. Wave processes in media with small nonlinearity and strong 
dispersion, where the solution is close to one or the superposition of several quasi- 
harmonic waves [1 - 41 have been studied with relatively great completeness. 
Furthermore, it is well known that in many problems related to waves on the 

surface of a liquid, in the plasma [S], in transmission lines for electromagnetic 
waves [6], and also in problems of nonlinear field theory n] the necessity arises 
to examine essentially nonsinusoidal waves with arbitrary relationship of nonlin- 

earity and dispersion parameters. Here also some methods exist for obtaining 

approximate solutions based on local similarity of the process to a stationary 
traveling wave [S, 8, 91. From the point of view of generality and physical clear- 

ness. apparently, the Hamilton’s variational principle in the averaged form as 
proposed by Whitham [8] is of greatest interest among these methods. In this con- 

nection the equations for envelopes (of amplitude, frequency, etc.) of the quasi- 
stationary wave are obtained in the form of differential equations of Euler in the 

corresponding variational problem with averaged Lagrangian. Such an approach. 
however, is directly applicable only to strictly conservative systems for which 
the Lagrangian is known (the determination of the latter frequently represents 
quite a complicated problem DO]). Furthermore, the independent value has the 

structure of the scheme for asymptotic expansion which permits to obtain aver- 
aged equations in any approximation with respect to the small parameter, as it 
was already done for one nonlinear second order equation [ll] and an arbitrary 
system of first order equations [12]. 

This paper examines processes which can be described by partial differential 
equations of the Lagrangian type, including in particular the Rayleigh dissipation 
function. The asymptotic method permits to examine processes which are locally 
similar to a plane stationary wave. We succeed in showing that the equations of 
the first approximation can be derived from the generalized Hamilton’s variat- 

ional principle in the averaged form. 
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Let us examine the system of equations 

+$+r &+w, CD = cI+) + EU) + O(G) (1) 

where u (r, t) is an N-dimensional vector-function, L is the hagrangian (density of 
the Lagrange function), CD is the density of nonpotential forces and E is the small para- 
meter. 

It will be assumed thal L and iI, are functions of u, Ut and G u and also of “slow” 
times T = et and the coordinate p = er. With respect to L and <I) we assume only that 

these are sufficiently smooth functions of their arguments. 
It is known that system (1) can be obtained from the generalized Hamilton’s variational 

principle [ 133 

s 
(6L + 8W) dr dl = 0, 6W = Q,6u (2) 

We note that for a nonconservative system in the general case it is not permissible to 
formulate the variational problem corresponding to (2), because a functional does not 
exist for which the variation coincides with BL + 8W [13j. 

Together with (1) let us examine the generating system of equations 

g-g +v_&_z& m(O) (z, p = const) 
t 

It will be assumed that the order of system (1) with respect to r and t coincides with 
the order of the generating system (3). 

If in the transition from (3) to (1) the order of the system increases then the results ob- 

tained below are applicable only to particular classes of stationary waves (“slow” motions 

in the phase space of system (3)). An example of averaging over “fast” stationary waves 
is examined in [14]. 

Let us assume that (3). has solutions in the form of stationary plane waves of the form 
u = U (Cl), 8 = ot - kr + Cl,,, which are determined from the following system 
of ordinary differential equations 

d aL aL 
A-__= 

d0 W, SJ 
Q)‘“’ 

(Z, P = const) 

and depend on two arbitrary constants of integration 0, and A and on parameters ‘r, p, 
o and k. The frequency o and the wavenumber k are connected with A by the disp- 

ersion relation 61 = o (k, A) and are selected in such a manner that U is a periodic 
function of 8 with a period ,251. 

For given U (Cl), closed trajectories in the phase space of system (4) correspond to 

periodic solutions. If the generating system is conservative (CD(O) E O), then the traject- 
ories occupy some subspace in the phase space. For a nonconservative system the periodic 

solution U,if it exists, is represented by an isolated trajectory in the phase space; for 
this solution all A are fixed. The profile of the wave is determined by the actual form 
of (3) and can differ strongly from the sinusoidal. The determination of conditions for the 
existence of periodic solutions for an arbitrary system of equations of the form of (4) is 

in itself a complex problem which has been solved only in some particular cases Cl5.161. 
The solution of the initial system of equations (l), close to U ((I), will be sought in 

the form of asymptotic series with respect to the small parameter E 
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u = u (e, A, z, p) + i PU@) (6, z, p) 
n=1 

m(z, Q) = 01, k(z, p) = - VB 

A (z, p) = ; en .P)(Z, p), 8 = e(o) (t, r, Z, p)*+ i Ene(n+, p) (5) 
n=o ?a=1 

Let m expand L and @ in series with respect to a taking into consideration (5) 
8L -- = - ;; + e (g$ u(l) + g&f (U, 4 UP)) + 

= 

&I 

8L 

au, 

a aL a aL -- 
at au, =atav, 

a2L 
+ auavu (V,U + Vzm)) + 0 (E2) 

-g + 8 (a& u(l) + a+ (U, + up) + 
t 

+ &y-i-& ;v,u + v&] + 0 (E2) 

E $&- +ej+&-~(~)+ a~2(u’+ut’1’) + 1 (6) 

+ a;;, (VJ-J + VU('))l) + 0 (E2) 

@ = c.p + E hp + g! 
\ (UT + UP)) + 

t 
~(V,U + Vu(l)) + a;: -u(l) + \ 

+ 0 (E2) 
Analogous expansions can be written for functions aL / avu and V (aL / dVu). 

In the right sides of Eqs. (6) the Lagrangian is determined by the principal term of 
series (5). i. e. 

L = L [T, p, u, oUe, -kUel, VpU = au I ap 
The variables fl and T, p are regarded as independent. Terms of the type (asL / 8 Us) U 

denote the multiplication of matrix daL/ au2 by the column U. 
Substituting (5) and (6) into (1) equating coefficients for the same powers of a, and 

taking into account (4), we obtain 

T t, P, 8, $, &) U@) = ff’“’ (Z, P, e) 
i 

(n = 1, 2, . ..) (7) 

Expressions for H@) at n > 2 are cumbersome and are not presented here. 
Thus, the determination of functions A, 8 and t&‘) in any approximation is connected 

with finding the solution of linear system (7) with periodic coefficients and a right side 
which is periodic with respect to 8 I This solution can be represented in the form 
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UP0 = y(p) + y s” y*Jp’ de’ 
(10) 

Here 0”) is a constant vector, Y is a matrix iomposed of vectors of the fundamental 
system of solutions of equations in variations of T$ = 0, Y*is the analogous matrix 

for the conjugate system which is connected with Y by the relationships 

sy*= E-l, I I iwe2 
YY"= 0 (11) 

TWO particular solutions of equations in variations are directly determined in terms 
of .(I [12, IS] 

Y1= Us, Yz=vfufW, (12) 

where U, and v are periodic functions of 6, a is a constant determined by the depend- 
ence of o and k on A. By virtue of the theorem of Floquet the remaining 2N - 2 vec- 

tors of matrix Y can be written in the form 

yi = eV fi (0) + compl conj. (i = 3,4, . . .) 2N) (13) 

in this case f (6 + 2n) 3 f (6)and all hi are considered to be distinct. It is assumed that 
if for any characteristic exponent hl Re hl = 0, then Im hl # f n (n = 0, i, 2, . ..). 

This condition is commonly used in the theory of quasi-linear oscillations as the cond- 
ition for the absence of internal resonance 1171, According to (11) - (13) the matrices 
Y and Y* have the form [ 181 

Yij .= y@P + U0yilbji + compl. conj. 

yjk* = y. *,-Aj, - 
]I( 

tleysk*Gji + compl conj. (14) 

where pij and vik are periodic functions of 6 and h1 = h, = 0. 

Substituting Y and Y* into (lo), we obtain after transformations 
e 

u,(n) = ytj chic I$“) + &yi, C’,“) + yij eAie 5 yi;~ e?‘Hr) de’+ 
0 

B’ 

+ ayi, 5 de’ 1 y!_&Hp) de” f compl. conj. (15) 
0 0 

It follows from this that u(n) is a bounded function of 8 on satisfying the following 
necessary conditions: 

00 

- 
s 

~xH$@ e-hjedO, Re hj > 0 

C’“’ = 0 
(16) 

3 0 

s 
y~kH~)e-“jede, Rehj<O 

-00 

25t~c~) + y &HP’ de + a j de i y&H:) de’ = 0 
0 

an 

s 
y;,Hf’) de = 0 

(17) 

Consequently there is only one independent equation for two unknown functions A(“) 
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and B(n). Such a situation is characteristic for nonisochronal oscillating systems and is 
connected with the fact that for such systems the amplitude and the phase are found 

from equations of different approximations [17]. For finding A(*) and e(n) in some cases 

it is convenient to utilize the following equations together with (18): 
2% 

s 
&H~‘&l = 0 (in), 

0 

in order to be able to make the limit transition to a quasi-harmonic wave. In fact, in 
the quasi-linear case (Bo / a.4 = 0) in (17) a = 0, and condition (19) becomes nec- 
essary. In this connection there is no ambiguity in the selection of equations for A@) 

and tJ(n) . 
Equations (15) - (19) permit to find sequentially the unknowns Acn), CC) and U(R). It 

should be noted that series (5) correspond to a particular class of boundary conditions, 
namely to the representation of a wave propagating only in one direction. An analogous 
situation occurs also for linear partial differential equations which contain the small 
parameter [ 191. 

Since 0 does not enter explicitly into (18) we can regard Acn), a@), kcn)as unknown 
functions. In this case it is necessary to supplement (18) by the following equations: 

ak/at + Vo = 0, rotk = 0 (20) 

Let us examine more closely the equations of the first approximation. It is evident 
that equations (18) and (20) for 12 = 1 are quasi-linear with respect to A, o and k and 
that they belong either to the hyperbolic or elliptic type (the latter is possible only for 

nonlinear systems IS]). In the hyperbolic case a family of real’characteristics exists which 
are rays in the r, t space. In this sense the present method can be regarded as a general- 
ization of the space-time geometrical optics to nonlinear media. 

It is emphasized that the obtained equations are valid for systems with arbitrary (not 
necessarily small) nonlinearity. The results of some papers [9, 20, 211, which are pre- 
sented for the case of small nonlinearity without concrete definition of dispersion para- 
meters and consequently the form of the stationary wave, are actually valid only for 

strong dispersion when the stationary wave is close to the harmonic wave. 
We can show that in the absence of nonconservative forces Q(O) the operator T is self- 

conjugate. This is also valid for cP(“’ # O.if @to) satisfies the conditions 

aado) aad!) d aa?) 
1=1_-- 
auj - au, d6 au,, 

For functions & and I/$ in this case we can take CIA’ and U, , respectively. 
It will be shown that the equation of the first approximation can be written in tht 

Lagrangian form. For this purpose we substitute (9) into (18) 

Let us integrate by parts the integral containing the brackets, taking into account the 



68 L.A.Ostrovskil and E.N.Pellnovskll 

periodicity of all functions with respect to 0. Then, after simple transformations the 
left side of (21) can be written in the form 

In this manner (18) can be presented in the form 

a a a> v a a4 (6W> 
--- pak=-- at ao a0 (22) 

Dispersion relation can be written in the form 

a (0 <6W, 
-=- 8A aA 

Here (L) iJ the value of the Lagrangian averaged over the period, (6W) is the aver- 
age virtual work. The symbols (6 W) / 60 and (6 W) / 6A denote coefficients in the 
variations 68 and 6A in the expression 

(6w) = (@Us) 60 + (r=J,) 6A (24) 

In this manner we arrive in the first approximation at Lagrange equations of the second 
kind for a certain system described through generalized functions A and 8. Consequently 
we can formulate the generalized Hamilton’s variational principle in the averaged form 

s (6 (L) + (6W)) drdt = 0 (25) 

From this the method of construction of equations of the first approximation is clear: 

the Lagrangian and the virtual work should be averaged over the period of the wave and 
the corresponding Lagrange equations of the second kind for the function A and (I should 

be written. This very approach was proposed in [8] for conservative systems. The method 
presented above provides some support for this approach. 

As in mechanics, nonconservative (we also include here active systems for which the 
dissipation can be negative or positive) distributed systems can be described in terms of 

density Q, = - aR / au, of the Rayleigh function. If average values CR) of the Rayleigh 
function are introduced, then we can show that (22) can be written in the form 

a am a CL) a CR) 
---vpak=- az aa at0 

With the aid of (26) we can obtain the transfer equation for the average values of energy 
density (E> and energy flux (S) in dissipative media 

a(E) am a(L) 
T+div,(S>=---o,,-r (27) 

( 

am a(L) ~ 
<E> =o ao --CL,, (S,=-or) 

Here oa CR> / &o is the density of dissipated power and a (L) / 3~ characterizes the energy 
change connected with the nonstationary behavior of parameters of the-medium. 

We note here the case where a (R) / a. -= pa(L) / ao, where p is a constant. Then 
(26) is written in the form of the Lagrange equation of a “reduced” conservative system 

a a(L*) a(L*)=o 
-jyaw--VP ak 

(L* = LP) (w 

In this case we can formulate the variational problem for the functional of “reduced” 
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action jl*ddt (and analogously for 5 (L*) drdt). The general form of L* for dissipative 

systems with concentrated parameters is discussed in B2, 232 
For a wavepacket localized in space it follows from (28) that 

s a a*> 
- dr = const ao 

(29) 

and the quantity of the integral in the left side of (29) can be called “reduced” adiabatic 
invariant in analogy to the adiabatic invariant in the conservative system. For a concen- 

trated system with one degree of freedom a relationship analogous to (29) was obtained 

in [173. 
We note in conclusion that all obtained equations are also directly applicable to osci- 

llating systems with concentrated parameters for any number of degrees of freedom, if 
we assume v = 0 and if L and R are understood to be functions of Lagrange and of the 

Rayleigh system respectively. Corresponding results are, of course, identical to known 
results [17]. However here also the approach used above has some advantages because 
the Lagrangian formulation of the method allows to obtain a number of results in a sim- 
pler form, especially for strongly nonlinear oscillations in systems with many degrees 

of freedom. 
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One proves the equivalence of the equations of the one-dimensional plane motion 
of an isotropic nonlinearly-elastic body and that of a perfectly conducting com- 
pressible fluid moving in an external magnetic field, the magnetic permeability 

of the fluid being an arbitrary function of the density and of the modulus of int- 
ensity of the magnetic field. For these models of the continuous medium one 
considers essentially the nonlinear problem of the transverse oscillations induced 
in an infinite layer by the periodic action of external tangential forces at one of 
the plane boundaries, while at the other one a perfect reflection of the waves is 
assumed. The singularity of the bahavior of the forced resonant oscillations are 
developed in the case when in the elastic body the velocity of the longitudinal 

waves is much larger than the velocity of the transverse waves and in the fluid 
the velocity of the sound exceeds by far the velocity of the Alfvkn waves. One 
establishes the relation between the amplitude of the constraining forces and 


